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Elastic wave scattering in a flat thin plate hosting a through obstacle of arbitrary closed

form is examined using a numerical technique based on the T-matrix approach, which is

applied to describe of flexural waves in plates. The limiting cases of a hole and a rigid

obstacle are considered. The vibrations of the plate are described by the Kirchhoff

inclusions of elliptic, triangular and square form with rounded corners is analysed

numerically. Comparison of present results for circular obstacles with the analytical

solutions obtained by other authors show excellent agreement.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The guided waves in a low frequency-thickness product region can be successfully used to non-destructive evaluation
of the large plate-like structures [1]. However, there are several complications which cause difficulties in the interpretation
of the scattered fields when a propagating Lamb mode interacts with inhomogeneity of arbitrary closed geometry.

Scattering of elastic waves can occur if there exists incontinuity such as inclusion, crack and cavity in an elastic medium
(see [2,3], for example). The analysis of elastic waves diffraction in thin plates with inhomogeneities of a cylindrical form is the
subject, among others, of papers [4–18]. With the wave function expansion method, Pao and Chao [4] were the first who
studied the problem of the flexural wave scattering and dynamic stress concentrations in Mindlin’s plates with a circular hole
and gave an analytical solution and numerical examples. Similar results were presented in [5] for a rigid inclusion. The theory
of flexural waves scattering from an elastic heterogeneity of a circular shape in a flat thin plate is developed in papers [6–9].
McKeon and Hinders [10] have studied the interaction of the lowest order symmetric Lamb waves with a circular hole in a
plate using Kane–Mindlin higher order plate theory and analytical expressions for the scattering waves are derived. Fromme
and Sayir [11] presented modelling of flexural wave scattering by a through hole using Kirchhoff and Mindlin theory and near
field measurements. Paskaramoorthy et al. [12] have used a finite element method (FEM) in combination with a wave function
expansion technique to study the scattering of flexural waves by arbitrary shaped cavities in Mindlin’s plates. Diligent et al.
have presented FEM and experimental results for scattering of first symmetric Lamb mode from through holes [13] and flat
bottomed holes [14]. Peng [15] presented the acoustical wave propagator technique to describe the flexural wave propagation
and scattering in an elastic plate with multiple cylindrical patches using Kirchhoff’s plate theory. The patches are made of the
same material as the plate and the radius of the patches is comparable with the plate thickness. Wang and Chang [16]
presented the scattering models based on a wave function expansion technique as well as the Born approximation for in-plane
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and flexural modes using the approximate plate wave theories. Grahn [17] investigated scattering of an incident plane
symmetric Lamb wave mode from a circular partly through-thickness hole in a plate using both 3D theory and lowest order
plate theories. The method which has been used is based on the mode expansions of the wave fields both in the inner region,
below the hole, and in the outer region, outside the hole. A model and far field measurements for guided wave scattering from
non-symmetric blind holes in isotropic plates using Poisson’s and Mindlin plate wave theories for in-plane and flexural wave
modes, respectively, was given by Cegla et al. [18].

The above publications have focused on the case of elastic wave scattering by circular inhomogeneities in a plate and
there are little or no reported researches for the scattering of flexural wave by heterogeneity of a non-canonical form. For
future applications of the guided waves in non destructive testing it would be very useful to use theoretical investigation of
scattering flexural wave by a non-circular scatterer. Therefore, the purpose of the present paper is to consider scattering of
flexural wave by a non-circular scatterer in a flat thin plate in the context of the Kirchhoff theory. Kirchhoff approximate
theory is a widely used for describing motion in thin plates when the wavelength is much larger than the plate thickness
and thus is only valid for low frequencies. Mindlin plate theory or 3D elasto-dynamic equations must be introduced in
order to extend the range of frequencies [17,18].

An effective technique for analyzing the scattered field from an object of arbitrary closed form was proposed by
Waterman [19]. This approach is well known as the T-matrix or null-field method. The T-matrix method has been used
successfully to describe acoustic, electromagnetic and bulk elastic wave scattering by objects of complex geometry (see
review paper [20], for example). In this article the T-matrix method is extended to describe the far field amplitude of
flexural waves scattered from a non-circular region of inhomogeneity in the plate. The numerical results show the efficacy
of the proposed method at low frequencies.

2. Problem statement and boundary integral relations

The elastic plate has thickness h, density r, Young’s modulus E, and Poisson’s ratio n. Scattering of an incoming plane
flexural wave by a rigid or a soft through inclusion, contour of which is other than circular, is considered. All motions have
frequency o and time dependence expð�iotÞ. The wave number is defined as k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho2=D4

p
, where D¼ Eh3=12ð1�n2Þ is

the flexural rigidity. Then equation of motion for the plate is

D2wðrÞ�k4wðrÞ ¼ 0; (1)

where D is the 2-D Laplacian, wðrÞ ¼winðrÞþwscðrÞ is a complete deflection of the median surface of the plate,
winðrÞ ¼ A0expðikr � lÞ is the incoming field, wscðrÞ is the reflected field, r¼ ðx; yÞ is the radius-vector of the point of the
median surface of the plate, ðx; yÞ are the Cartesian co-ordinates with origin inside the heterogeneity, l¼ ðcosyi; sinyiÞ is the
direction of the wave incident. For a given direction n¼ ðn1;n2Þ the bending moment M, generalized Kirchhoff stress V and
normal slope g at the point ðr; yÞ (x¼ r cosy, y¼ r siny) are
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The field wscðrÞ satisfies the Sommerfeld radiation condition at infinity, from which it follows that:

wscðr; yÞ ¼ A0

ffiffiffiffiffiffiffiffi
2

pkr

r
eiðkr�p=4Þf ðy; yiÞþoð1=

ffiffiffi
r
p
Þ; r-1; (3)

where f ðy; yiÞ is the scattered far-field amplitude.
Boundary conditions on the contour G of the inhomogeneity are expressed in terms of the deflection wðrÞ, the normal

slope gðrÞ, the bending moment MðrÞ and the generalized Kirchhoff stress VðrÞ:

MðrÞ ¼ 0; VðrÞ ¼ 0; r 2 G for absolutely soft inclusion; (4)

wðrÞ ¼ 0; gðrÞ ¼ 0; r 2 G for absolutely hard inclusion: (5)

The fundamental solution of Eq. (1) is given by Gðr; r0Þ. It is the solution of Eq. (1) with a Dirac’s delta distribution as the
load applied at the point r0:

ðD2
�k4ÞGðr; r0Þ ¼ dðr�r0Þ=D: (6)
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It represents the transversal deflection of an infinitely extended plate at point r due to a unit concentrated lateral load at
point r0. The solution of (6) has the form [21]

Gðr; r0Þ ¼
1

8pDk2
½ipHð1Þ0 ðkjr�r0jÞ�2K0ðkjr�r0jÞ�: (7)

In Eq. (7) Hð1Þ0 ðxÞ is the zero order Hankel function of the first kind, K0ðxÞ is the zero order modified Bessel function of the
second kind.

With the aid of Green’s identity [21] and the fundamental solution (7) and its derivatives, it is possible to write an
integral relation for the displacement w at point r 2 R2:Z

G
½VGðr; r0Þwðr0Þ�MGðr; r0Þgðr0Þ�dGðr0Þ�

Z
G
½Vðr0ÞGðr; r0Þ�Mðr0ÞgGðr; r0Þ�dGðr0ÞþwinðrÞ ¼

wðrÞ; r 2 S

0; r 2 S

(
(8)

In Eq. (8) S is the region of median surface of the plate outside of the inclusion, VGðr; r0Þ, MGðr; r0Þand gGðr; r0Þ represent
the elements (2) derived from the fundamental solution (7) and, finally, S is the interior domain of the inclusion
ðS [ S ¼R2=GÞ.

Just as in acoustic and elastic bulk wave scattering process, certain reciprocity relation is satisfied in flexural wave
scattering and it is given by

f ðy; yiÞ ¼ f ðpþyi;pþyÞ: (9)

To prove this relation the similar procedure as in [22] may be used.

3. Determination of the transition matrix

With the purpose of finding a numerical solution to the exterior problems (1) and (4), (5) at the wave zone of a scatterer,
we use the T-matrix approach [19]. Applying Graf’s addition theorems to the special functions in the fundamental solution
(7), we obtain

Gðr; r0Þ ¼
1

8pDk2

X2
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(
(10)

where en is the Neumann factor, JnðxÞ are Bessel functions and Hð1Þn ðxÞ are Hankel functions of the first kind, InðxÞ and KnðxÞ

are the modified Bessel functions of the first and second kind, respectively.
The set fFtsnðrÞg is a complete set suitable to represent the scattered waves everywhere outside the circle

circumscribing the domain S and it corresponds to outgoing and exponentially decaying waves at infinity. To represent the
incident field (with sources outside of the obstacle) we used the set fFtsnðrÞg, regular at the origin. Thus we expand

winðr; yÞ ¼ A0

X2

t ¼ 1

X2

s ¼ 1

X1
m ¼ 0

atsmFtsmðr; yÞ; romin
r2G
jrj;
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X2

t ¼ 1

X2

s ¼ 1

X1
m ¼ 0

atsmFtsmðr;yÞ; r4max
r2G
jrj; (11)

where atsm are unknown coefficients to be determined, and a1sm ¼
ffiffiffiffiffiffi
em
p

imCsmðyiÞ, a2sm ¼ 0. Putting expansions for win, wsc

and Gðr; r0Þ into Eq. (8), we get

atsm ¼ bt

Z
G
ðV tsmwðr0Þ�Mtsmgðr0ÞÞdGðr0Þ; (12)

atsm ¼ bt

Z
G
ðVtsmwðr0Þ�Mtsmgðr0ÞÞdGðr0Þ; (13)

for a soft inhomogeneity and

atsm ¼ bt

Z
G
ðgtsmMðr0Þ�FtsmVðr0ÞÞdGðr0Þ; (14)
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atsm ¼ bt

Z
G
ðgtsmMðr0Þ�FtsmVðr0ÞÞdGðr0Þ; (15)

for a hard inhomogeneity. In Eq. (12)–(15) the bending moments Mtsm and Mtsm, the effective shear forces Vtsm and V tsm,
the normal slopes gtsm and gtsm are defined by relations (2) if the function wðr; yÞ is replaced by the functions Ftsmðr; yÞ
and Ftsmðr; yÞ in them, respectively, bt ¼ ðipdt1�2dt2Þ=ð8pDk2Þ, where dti is the Kronecker delta.

From now on, we represent wðrÞ, gðrÞ, and MðrÞ, VðrÞ, r 2 G, using the polar coordinates, in the form of truncated series:
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where a is the characteristic dimension of the inhomogeneity, M-1.
Substituting this expansions into Eqs. (13) and (15) we obtain an infinite system of linear algebraic equations for

unknown coefficients xl
tsn, l=s, h. In the matrix notation we have

Q l
1;1 Q l

1;2

Q l
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@
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Similarly, from Eqs. (12) and (14), we obtain
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where xl
t, at, at denotes column matrices formed by xl

tsn, atsm, atsm, respectively. The elements of the matrices Q l
t;t0

are

Qs
tsm;1s0n ¼�bt

Z
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The expressions for Q
l

tsm;t0s0n contain functions V tsm, Mtsm, gtsm and Ftsm instead of functions Vtsm, Mtsm, gtsm and Ftsm

in integrands of Eqs. (19), respectively.
Solving formally the matrix Eqs. (17) and (18), we obtain the transition matrix T, that relate coefficients atsm with

coefficients atsm:
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or

T¼Q
l
ðQ l
Þ
�1: (21)

The T matrix depends only on the nature and shape of the obstacle and does not depend on the incident field. The
requirements of reciprocity and energy conservation impose additional constraints on the transition matrix. To derive
these constraints, notice that the far-field amplitude may be obtained from Eq. (11) and can be written as

f ðy; yiÞ ¼
X2

s ¼ 1

X1
m ¼ 0

a�1smðyÞa1smðyiÞ; (22)

or in the matrix notation

f ðy; yiÞ ¼ a�tðyÞT1;1aðyiÞ ¼ b�t
ðyÞTbðyiÞ; bðyÞ ¼

aðyÞ
0

� �
; (23)
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where aðyÞ denotes the column matrix formed by a1smðyÞ, the asterisk indicates a complex conjugate and a superscript t

indicates transpose of the matrix. Since a1smðpþyÞ ¼ a1sm�ðyÞ, we obtain

f ðpþyi;pþyÞ ¼ b�t
ðyÞTtbðyiÞ: (24)

The reciprocity relation, Eq. (9) then implies that T matrix is symmetric

T¼ Tt : (25)

The expression of energy conservation is related to the optic theorem [6]

ssc ¼
2

pk

Z 2p

0
jf ðy; yiÞj

2 dy¼�
4

k
Re f ðyi;yiÞ; (26)

where sscis the scattering cross-section. Substituting Eq. (23) into Eq. (26), we obtain

atðyiÞðT
t
1;1ÞðT1;1

�
Þa� ðyiÞ ¼�atðyiÞReðT1;1Þa

�
ðyiÞ (27)

and thus

T1;1T1;1
�
¼�Re T1;1: (28)

The properties (25) and (28) of the T matrix are particularly important since they are indispensable for checking the
accuracy of the numerical calculations.

It is well known that the scattering cross-section for a single obstacle is proportional to the wave attenuation coefficient
b in the medium containing dilute concentration and stochastically distributed the equal obstacles [6]

b¼ ðn=2Þssc ¼�
2c

ks0
atðyiÞReðT1;1Þa

�
ðyiÞ; (29)

where s0 is the area of a single obstacle, c is the inclusion density parameter (the quantity n¼ c=s0 corresponds
to the number density of the inclusions). For the case of randomly oriented obstacle, the average of Eq. (29) over the angle
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Fig. 1. The magnitude of the backscattered far-field amplitude in plate with rigid inclusion of (a) elliptic form ðN¼ 1; e¼ 0:2Þ, in Eq. (31)), (b) square form

ðN¼ 3; e¼ 1=9Þ and (c) triangle form ðN¼ 2; e¼ 0:25Þ.
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yi must provide

b¼
n

4p

Z 2p

0
sscðyiÞdyi ¼�

2c

ks0

X2

s ¼ 1

X1
m ¼ 0

Re T1sm;1sm (30)

Consequently, the expressions (21), (23), (29) and (30) give the solution of the problem in the far wave zone of a
scatterer.

4. Numerical examples

As an example let us consider a case when the inclusion shape is given by the parametric equation

rðjÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe2þ2e cosðNþ1Þj

1�e2N

r
; yðjÞ ¼ arctg

sinj�e sin Nj
cosjþe cos Nj

; 0rjr2p; (31)
2 4 6 80

θi

wi

f b

ka

0°

2 4 6 80

f b

ka

θi = 90° 
θi = 90° 

0°

1.0

0.5

1.0

0.5

Fig. 2. Backscattered amplitude from elliptic hole ((a) e¼ 0:2, (b) e¼ 0:3) for incident angles from 01 to 901 in steps of 101.
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Fig. 3. Backscattered amplitude from triangle hole ðN ¼ 2; e¼ 0:25Þ for incident angles from 01 to 601 in steps of 101.



ARTICLE IN PRESS

V.V. Matus, V.F. Emets / Journal of Sound and Vibration 329 (2010) 2843–2850 2849
where 0reo1, N is a natural number. For particular values N and variables e we obtain some set of contours. In particular,
for N¼ 1 we have ellipses with aspect ratio ð1�eÞ=ð1þeÞ, for N¼ 2—triangles, for N¼ 3—squares with rounded corners.
The area of obstacle is s0 ¼ pa2.

It is obvious that in numerical calculations the parameter Min expansion (16) is limited and unknown quantities can be
calculate with sufficient accuracy by approximate numerical procedures. Indeed, an accuracy of one percent is obtained if
M¼ 12 for kar3, M¼ 2kaþ6 (truncated to closest integer) for 3okar10.

Figs. 1–4 present the modulus of backscattering amplitude fb ¼ jf ðpþyi; yiÞj versus dimensionless wavenumber ka

for various angles of incidences yi and form of inclusions. Calculations have been performed for a steel plate with
Poisson’s ratio 0.26. The response from the rigid inclusions (Fig. 1) increases without bound as the frequency tends to zero
0 2 4 6 8
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Fig. 4. Backscattered amplitude from square hole ðN¼ 3; e¼ 1=9Þ for incident angles from 01 to 451 in steps of 51.
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Fig. 5. Effect of hole forms on attenuation of flexural wave in steel plate with randomly distributed and randomly oriented holes.
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(the static limit). This is to be expected, and has been discussed by Norris and Vemula [6] for scattering of flexural wave
from a circular rigid inclusion.

The backscattering amplitudes for a hole (Figs. 2–4) oscillate with increasingka. This oscillation is due to interference of
the wave specularly reflected from the front hole and waves diffracted on the hole. In frequency range ka42 the largest for
fb values correspond to normal wave incidence on the quasi flat part of the hole (yi ¼ 903 for ellipses, yi ¼ 03 for triangle and
yi ¼ 453 for square hole).

Note that numerical calculations of the backscattering amplitude for a rigid circular inclusion and a circular hole (e¼ 0
in Eq. (31)) are in complete accordance with corresponding data given by Norris and Vemula [6].

Fig. 5 presents the frequency dependences of normalized attenuation coefficients b ¼ ð2pa=cÞb in steel plates with
randomly distributed and randomly oriented holes of circular (e¼ 0), elliptic ðN¼ 1; e¼ 0:3Þ, square ðN¼ 3; e¼ 1=9Þ and
triangle ðN¼ 2; e¼ 0:25Þ shapes. The hole of different forms has the same area. As it is seen, for all forms of holes we
observe the increase of parameter b when the frequency increases. Attenuation of the flexural wave in the plate with
randomly distributed holes of triangular form reaches the higher value than other forms of the hole.

5. Conclusions

It has been shown that the T-matrix method can be used to investigate the flexural wave scattering in a two-
dimensional thin plate with a through inhomogeneity of complex geometry. In particular, when the exact analytical
solution cannot be obtained, the improved T-matrix is direct and elegant. The scattering matrix, that related the outgoing
waves with ingoing, is S¼ 1þ2T1;1. From properties (25) and (28) we see that S matrix is symmetric and unitary.

We have presented the scattering problem for a limited case of scatterer: hole and rigid inclusion. One advantage of the
present method is that it can be easily adopted to scattering of flexural wave by inclusions with arbitrary plate properties
and can be extended to analyse the vibration control of plate-like structures. Numerical examples show that the proposed
approach has great advantage in programming easily, higher efficiency and accuracy, and is reliable compared with the
wave function expansion method.
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